
1

Review of data types:

We have a finite amount of memory for data storage. As programmers, we must decide how

much memory we should allocate for each variable.

The amount of memory we allocate will determine how accurate the results will be. We cannot

store numbers with infinite precision.

In our decimal number system, if you allocate 4 digits to store number data, you can only store

the numbers 0 to 9999. You can permute 0-9 in 4 digits only 10000 ways.

In the binary number system, if you allocate 4 binary digits (bits) to store number data, you can

only store the numbers 0 to 15. You can permute 0-1 in 4 digits only 16 ways.

binary decimal

0000 = 0

1111 = 15

If you allocate 8 bits (1 byte) to store number data, you can store 256 different pieces of

information.

binary decimal

11111111 = 255

In RAM, information is stored in capacitors. If a capacitor is charged, that represents 1. If a

capacitor is discharged, that represents 0. There are only 2 states that the capacitor can be in.

The 1s and 0s are just our abstract representation of the state of capacitors.

Characters are given 1 byte (8 bits) for information storage. We can create 256 different

characters.

2

Beyond MAE10:

Matlab/Octave is designed to be very convenient when working with matrices. Much of the

world’s computing power is dedicated to solving sets of linear equations, Ax = b, where A is a

known NxN array, x is a Nx1 array, and b is a known Nx1 array. Weather forecasting, graphics

rendering, and many engineering problems require solving the equation Ax = b. A lot of time

and effort has gone into trying to solve Ax = b as efficiently as possible.

Let’s look at a simple example:

2 apples and 1 pear cost $4

1 apple and 2 pears cost $5

How much does each apple and pear cost?

If we say apple = x1, pear = x2, then we can write the following set of linear equations,

2x1 + 1x2 = 4

1x1 + 2x2 = 5

or










21

12









2

1

x

x
= 









5

4

 A x = b

By simple substitution we can calculate that x1 = 1 and x2 = 2. However, what if we had 50

different foods (50 different xi)? This problem would be straight-forward to solve, but it would

take a very long time.

Fortunately, Matlab/Octave allows you to solve Ax = b easily by multiplying b with the inverse

of A.

> A = [2 1; 1 2];

> b = [4 ; 5];

> x = inv(A)*b;

> disp(x)

 1.00000

 2.00000

3

FINAL THOUGHTS FOR THE COURSE:

The past 60 years has seen computers becoming smaller, faster, cheaper, more

numerous, and more user-friendly. In this relatively short period of human history,

we have gone from a hand-full of people developing only a few giant metal

behemoths that weighed tons and took up entire rooms, to almost everyone having

powerful cell phones that fit comfortably into their pocket.

The trend of smaller, faster, cheaper, more numerous, and more user-friendly

computers likely will continue well into the future.

HOWEVER, the basic building blocks of computer programming – variables,

arrays, data types, Boolean logic, if statements, loops, functions, and everything

else you learned in this course – have remained. Every high-level computer

language that is used today (Fortran, C, C++, Java, Matlab, Mathematica, etc) still

contains these basic building blocks.

It is possible that computer programs will become more user-friendly and may

feature many shortcuts for commonly-used functions or commands. For example,

Matlab/Octave offers many built-in functions such as mean() and std() that

calculate the average and standard deviation of an array, respectively. These two

programs also allow for much easier array manipulation than other languages, such

as Fortran.

If you choose a career that involves computer programming, the skills that you

learned in MAE10 will be relevant to your job. Good luck!

4

Review session for Final Exam:

(1) Array manipulation:

In mfile.m:

x = [3,7,4,6,7]

y = x(2:4)

a = [0:2:6 ; 1:3:10 ; 3, 5, 9, 11]

b = a(1:2,1:2)

c = a(2:3,3:4)

d = [b , c]

At command line:

> mfile

x = 3 7 4 6 7

y = 7 4 6

a = 0 2 4 6

 1 4 7 10

 3 5 9 11

b = 0 2

 1 4

c = 7 10

 9 11

d = 0 2 7 10

 1 4 9 11

(2) Order of operations – PEMDAS

In mfile.m:

a = [3 , 6, 2, -1];

b = a(2)-a(3)*a(4)^a(1)/a(3) + a(3)

At command line:

> mfile

b = 9

5

(3A) Logical expressions and if statements

In mfile.m:

a = 20; b = 10;

a>b | (a==20 & b>5)

if(a>b | (a==20 & b>5))

 disp('hi')

 if(b>a)

 disp('cheese')

 elseif(a==20)

 disp('railroad')

 else

 disp('yak')

 end

elseif(b>5)

 disp('bye')

else(b==10)

 disp('hola')

end

At command line:

> mfile

ans = 1

hi

railroad

(3B) Switch and case

In mfile.m:

animal = 'ape';

horse = 'zebra';

switch(animal)

 case{horse,'goat'}

 disp('hi')

 case{'ape','snake'}

 disp('bye')

 otherwise

 disp('hola')

end

At command line:

> mfile

bye

6

7

(4) For and while loops

In mfile.m:

a = [3 , 1, 1, -1 ; 4, 3, 2, 1];

summy = 0;

for i=1:2

 for j=1:4

 summy = summy + a(i,j);

 end

end

avg = summy / numel(a)

summy = 0;

i=1;

while(i<=2)

 j = 1;

 while(j<=4)

 summy = summy + a(i,j);

 j = j + 1;

 end

 i = i + 1;

end

avg = summy / numel(a)

At command line:

> mfile

avg = 1.7500

avg = 1.7500

8

(5) Input/output

In mfile.m:

a = [3 , 1, 1, -1 ; 4, 3, 2, 1];

fprintf('%7.2f %7.2f %7.2f %7.2f\n', a')

fileid = fopen('output.txt','w');

fprintf(fileid,'%7.2f %7.2f %7.2f %7.2f\n', a')

fclose(fileid);

fileid = fopen('output.txt');

b = fscanf(fileid,'%f', [4,2])

fclose(fileid);

fprintf('%7.2f %7.2f %7.2f %7.2f\n', b')

At command line:

> mfile

 3.00 1.00 1.00 -1.00

 4.00 3.00 2.00 1.00

 3.00 4.00 1.00 3.00

 1.00 2.00 -1.00 1.00

(6) Functions

In mfile.m:

cheese = @(z) z^2

a = 2; b = 5;

w = 20; t = 40;

x = 100; y = 200;

[c,d] = funky(a,b)

disp(x)

disp(y)

disp(cheese(a))

disp(cheese(b))

In funky.m:

function [x,y] = funky(w,t)

x = w+t;

y = w-t;

endfunction

9

At command line:

> mfile

c = 7

d = -3

 100

 200

 4

25

(7) Plotting

In mfile.m:

x = (0:1:20);

y = x.^2;

z = x.^3

%plot(x,y,'-ro' , x,z,'-gx')

%xlabel('my xlabel')

%plot(x,y,'-ro')

%hold on

%plot(x,z,'-gx')

%xlabel('my xlabel')

%hold off

%subplot(1,2,1)

%plot(x,y,'-ro')

%subplot(1,2,2)

%plot(x,y,'-gx')

(8) Data types

a = 55; %This is double precision by default

single(a)

int8(a)

int64(a)

char(a)

(9) Binary

Binary code – This is a base 2 counting system.

01010101 = 64 + 16 + 4 + 1 = 85

85 is the decimal (base 10) representation of 01010101 in the binary (base 2) counting system.

