
The return command:

When a return command is executed in a function, the function is terminated. The output is sent

to the calling program immediately. If you omit the return command, the function will terminate

at endfunction.

In main.m:

x = 5;

disp(y(x));

In y.m:

function [w] = y(x)

if(x > 10)

 w = x + 2;
 fprintf('hello\n')

 return

else
 w = x + 4;

 fprintf('bye\n')

 return

end
w = 1000;

disp('hibye\n')

endfunction

At command line:

> main

bye

 9

Notice that the last two commands in the function did not get executed. As soon as return is

executed, the function is terminated.

Here is an example of arrays as input and output. Make a function that calculates A .* B, where

A and B are arrays, without using the .* operator. The function should check if the dimensions of
A and B are the same.

In main.m:

A = [1 3 5 ; 3 3 3];
B = [6 6 5 ; 3 2 1];

C = [1 1 ; 4 5 ; 8 9];

disp(MULT(A,B))

disp('')
disp(MULT(A,C))

disp('')

disp(MULT(A',C))

disp('')
disp(MULT(A(1:2,1:2) , C(1:2,1:2)))

In MULT.m:

function[out] = MULT(X,Y)
% if X and Y are the same size...

if(size(X) == size(Y))

 [row, col] = size(X);

% Multiply each pair of elements
 for i=1:row

 for j=1:col

 out(i,j) = X(i,j) * Y(i,j);

 end
 end

% if X and Y are not the same size...

else

 out = 'Error! ';
end

endfunction

At command line:
> main

 6 18 25

 9 6 3

Error!

 1 3

 12 15
 40 27

 1 3

 12 15

Functions within functions:

You can call functions within functions as long as they are in the same directory. We want to

calculate the value of y = 2*<x> + x2 for every element in an array x, where <x> is the average

value of x, without using the mean() function.

In main.m:

x = [2,4,5];

y = myFunc(x);

fprintf('The values of y are: \n')
fprintf('%f \n' , y)

In myFunc.m:

function [y] = myFunc(x)
avgx = averagex(x);

for i=1:numel(x),

 y(i) = 2*avgx + x(i)^2;

end
return

endfunction

In average.m:
function [avgvalue] = averagex(x)

sum = 0;

for i=1:numel(x),

 sum = sum + x(i);
end

avgvalue = sum / numel(x);

endfunction

At command line:

> main

The values of y are:

11.333333
23.333333

32.333333

Help menu for functions:

If you type help function_name at the command line, you can get information about a particular

function.

> help mean
`mean' is a function from the file c:\Octave\3.2.2_gcc-

4.3.0\share\octave\3.2.2\m\statistics\base\mean.m

 -- Function File: mean (X, DIM, OPT)
 If X is a vector, compute the mean of the elements of X

 mean (x) = SUM_i x(i) / N

 If X is a matrix, compute the mean for each column and return them
 in a row vector.

… etc.

When you make your own function, you can also give information for the user by putting
commentary JUST AFTER the function heading. For example, make the following changes to

averagex.m.

function [avgvalue] = averagex(x)
% This function calculates the average of the elements in the array x

% mean(x) should do the same thing.

sum = 0;

for i=1:numel(x),
 sum = sum + x(i);

end

avgvalue = sum / numel(x);

endfunction

At command line:

> help averagex

`averagex' is a function from the file C:\Users\Paul\averagex.m
 This function calculates the average of the elements in the array x

 mean(x) should do the same thing.

You can also put sub-functions within the same m-file:

In main.m:

x = [2,4,5];

y = myFunc(x);

fprintf('The values of y are: \n')
fprintf('%f \n' , y)

In myFunc.m:

function [y] = myFunc(x)
avgx = averagex(x);

for i=1:numel(x),

 y(i) = 2*avgx + x(i)^2;

end
endfunction

function [avgvalue] = averagex(x)

sum = 0;
for i=1:numel(x),

 sum = sum + x(i);

end

avgvalue = sum / numel(x);
endfunction

Functions with no input or output:

Sometimes you may want to make functions that require no input or output. For example if you

want to make a function that returns a constant (like pi).

No input example:

In main.m:

%%% THE PARENTHESES ARE OPTIONAL IF THERE IS NO INPUT

A = constval();
fprintf('%f',2*A)

In constval.m:

function [ans] = constval()
ans = 1.23456;

return

endfunction

At command line:

> main

2.469120

No input or output example:

In main.m:

score = -5;

if(score<0)

 printwarning()
end

In printwarning.m

function [] = printwarning ()
disp('Warning: Score is negative')

endfunction

At command line:
> main

Warning: Score is negative

Here is an example with functions within functions within functions. If multiple functions are on

the same line, they are executed left to right.

In the “main” program:

a = [0 3 9 6 0];

b = [1 1 2 3];

c = [3 4 3];
% func1 is calculated first, then func2

w = func1(a(2:4) , a(3:5)) + func2(b(3) , c(3));

disp(w)

In the m-file containing the function func1:

function [out] = func1 (x, y)

fprintf('In func1 %i %i\n' , x(1) , y(1))

out = x(2) + func2(x(2) , y(2));

endfunction

In the m-file containing the function func2:

function [out] = func2 (w, y)

fprintf('In func2 %i %i\n' , w , y)
out = func3(w) + func3(y);

endfunction

In the m-file containing the function func3:

function [out] = func3 (x)

fprintf('In func3 %i\n' , x)
out = x(1)/2;

endfunction

At command line:
> main

In func1 3 9

In func2 9 6

In func3 9
In func3 6

In func2 2 3

In func3 2

In func3 3
 19

