
1

Scope – Global vs Local Variables:

By default, variables are locally defined. This means that variables only exist within an

individual program or function. If you change the value of a variable called x within a function,

the variable x in the main program (if it exists) will not be changed.

In many programs you will write for this class, it often makes sense to use the same variable

name in the argument list of the function in both the function sub-program and the calling

program. For example,

In main.m:

x = 1;

fprintf('y(x) is %7.2f \n' , y(x))

In y.m:

function [result] = y(x)

result = x^2 + 2*x + 1;

return

endfunction

At command line:

> main

y(x) is 4.00

2

However, the following form of y.m also is valid:

function [result] = y(t)

result = t^2 + 2*t + 1;

return

endfunction

If we execute the code again, at the command line:

> main

y(x) is 4.00

The VALUE of x in the main program is passed down to t in the function y. What if we put a

variable x in the function y?

In y.m:

function [result] = y(t)

x = 1000;

result = t^2 + 2*t + 1;

return

endfunction

In main.m:

x = 1;

fprintf('x before function is %7.2f \n' , x)

fprintf('y(x) is %7.2f\n' , y(x))

fprintf('x after function is %7.2f \n' , x)

fprintf('t after function is %7.2f \n' , t)

At command line:

> main

x before function is 1.00

y(x) is 4.00

x after function is 1.00

error: `t' undefined near line 6 column

The variables x and t are locally defined. The variable t is not defined in the main program, so

Matlab/Octave doesn’t know what to do.

Variables are locally defined by default. It is possible to make global variables that are defined

in both the main program and function(s), but it is a bit dangerous to use global variables and we

will not be learning about them in this class. If you want to learn about global variables, refer to

your textbook or perform a google search.

3

In main.m

clear; clc;

X = 1; Y = 2; Z = 3;

fprintf('main, before funky: X=%i,Y=%i,Z=%i \n' , X,Y,Z)

[A,B] = funky(X,Y,Z)

fprintf('main, after funky: X=%i,Y=%i,Z=%i \n' , X,Y,Z)

In funky.m:

% The variables in a function only exist while the function is being

% executed. You can 'resurrect' the variables by calling the function again.

function[W,T] = funky(Y,Z,X)

W = X + Y + Z;

T = X - Y - Z;

fprintf('In funky: X=%i,Y=%i,Z=%i \n' , X,Y,Z)

return

endfunction

At the command line:

> main

main, before funky: X=1,Y=2,Z=3

In funky: X=3,Y=1,Z=2

A = 6

B = 0

main, after funky: X=1,Y=2,Z=3

4

Arrays as input and output:

Arrays may be used as input or output in exactly the same way as variables (remember that

variables are treated as 1x1 arrays in Matlab/Octave). Let’s make a function that finds the max

value from an array without using the max() function.

In main.m:

x = [1, 5, -1, 3, 4];

fprintf(‘The max value is %f \n’ , findmax(x))

fprintf(‘The max value is %f \n’ , findmax(x(3:5)))

In findmax.m:

% Notice that this function will work regardless of the size of the array x.

% x could even be a variable (1x1 array)

function [max] = findmax(x)

max = x(1)

for i=1:numel(x)

 if(x(i) > max)

 max = x(i)

 end

end

endfunction

At command line:

> main

The max value is 5.0000

The max value is 4.0000

5

ONLINE BONUS EXAMPLE 1:

Here is an example with multiple arguments (input). The variables x, y, z are used in both the

main program and in a function, but are completely unrelated.

In main.m:

x = 1.1;

y = 1.2;

z = 1.3;

fprintf('In main program, x+y+z = %f \n' , myFunc(x,y,z))

fprintf('In main program, x,y,z are %4.2f %4.2f %4.2f \n', x,y,z)

In myFunc.m:

function [output] = myFunc(a,b,c)

x = 0.1;

y = 0.2;

z = 0.3;

output = a + b + c;

fprintf('In myFunc, a+b+c = %f \n' , output)

fprintf('In myFunc, x+y+z = %f \n' , x+y+z)

return

endfunction

At command line:

> main

In myFunc, a+b+c = 3.600000

In myFunc, x+y+z = 0.600000

In main program, x+y+z = 3.600000

In main program, x,y,z are 1.10 1.20 1.30

Notice how x, y, z in the main program are different from x, y, z in the function.

6

Remove the lines that define x, y, and z in the function,

In main.m:

x = 1.1;

y = 1.2;

z = 1.3;

value = myFunc(x,y,z)

In myFunc.m:

function [output] = myFunc(a,b,c)

output = a + b + c;

fprintf('In myFunc, x,y,z are %f,%f,%f \n' , x,y,z)

return

endfunction

When we try to run this code, we get an error that x is undefined in myFunc.m. The value of x

in main.m is passed to a in myFunc.m. The function has no idea what x, y, and z are.

ONLINE BONUS EXAMPLE 2:

Here is an example with multiple outputs. Often we want to create functions that calculate

multiple quantities.

In main.m:

a = 1;

b = 2;

[add,subtract,mult,div] = math(a,b)

In math.m:

function [a,s,m,d] = math (c,d)

a = c+d;

s = c-d;

m = c*d;

d = c/d;

endfunction

At command line:

> main

add = 3

subtract = -1

mult = 2

div = 0.50000

