
1

USER-DEFINED FUNCTIONS/SUB-PROGRAMS:

In many programs, a task needs to be completed more than once. For example, you may need to

calculate the factorial of a number many times in a program.

Additionally, if a program is very long it sometimes makes sense to break the program into many

parts. For example, in air quality modeling there are sub-programs for handling advection,

diffusion, chemistry, emissions, deposition, etc.

You are already familiar with the built-in functions such as cos(x), sqrt(x), and mean(x). Often

you will want to write your own functions to accomplish tasks that your program needs to do

often.

Note: Technically, it is possible to never use functions in your Matlab/Octave code. However,

your code may become unnecessarily complicated and lengthy if you do not use them.

You call a function in the main program or another function. A list of arguments (input) is sent

to the function and the function returns some output.

With cos(x), the argument x (an array) is passed down to the function cos(). The answer (an

array) is returned as output

User-defined functions are created in separate M-Files. These M-Files must have the following

syntax:

function [output_variables] = function_name(input variables, also called arguments)

commands

return

endfunction

(Note: If you only have 1 output variable, which often is the case, you may leave off the

brackets.)

Let’s create a function y(x) = x
2
 + 2x + 1 using techniques we have learned in the past.

In main.m:

x = input('Enter the value of x: ');

y = x^2 + 2*x + 1;

fprintf('The value of y(x) is: %f \n', y)

After execution: (assume the value of 3 is entered by the user)

Enter the value of x: 3

The value of y(x) is: 16.000000

2

We can do the same task with a function. The function M-File name must be the same as the

name of the function (function_name). For example,

In the M-File y.m:

function [result] = y(x)

result = x^2 + 2*x + 1;

return

endfunction

There is one argument (input) called x and one output variable called output. You can call the

function y(x) in any other M-File as long as function M-file and M-file that calls the function are

both in the same directory. For example, in the main M-File (let’s call it “main.m”),

In main.m:

x = input('Enter the value of x: ');

fprintf('The value of y(x) is: %f \n', y(x))

fprintf('The value of y(x) is: %f \n', y(1))

At command line:

> main

Enter the value of x: 3

The value of y(x) is: 16.000000

The value of y(x) is: 4.000000

IMPORTANT: Both main.m and y.m must be in the same directory!

Each time you call a function, the VALUE of the argument in the calling program (main.m, in

this case) is passed down to the argument in the function. In the above example,

 - In the first fprintf() the VALUE of x (which is 3) is passed down to the variable x in the

function y. This value is used to calculate result (which is 16) in the function y, which is the

output for the function. Once the function is completed, VALUE of the result is passed back to

the calling program and displayed to the screen.

- In the second fprintf() the VALUE of the argument (which is 1) is passed down to the variable

x in the function y. This value is used to calculate result (which is 4) in the function y, which is

the output for the function. Once the function is completed, VALUE of the result is passed back

to the calling program and displayed to the screen.

3

You can call up multiple functions within a program. Let’s create another function z(x) = x-1.

First, we need to create another M-file called z.m.

In the M-File z.m:

function [result] = z(x)

result = x-1;

return

endfunction

Now we can use this function whenever we want in the main program as long as z.m is in the

same directory as main.m

In main.m:

x = input('Enter the value of x: ');

fprintf('The value of y(x) is: %f \n', y(x))

fprintf('The value of z(x) is: %f \n', z(x))

fprintf('The value of y(x) * z(x) is: %f \n', z(x)*y(x))

x = 2; % The value of x has changed

fprintf('The value of y(x) * z(x) is: %f \n', z(x)*y(x))

After execution:

Enter the value of x: 3

The value of y(x) is: 16.000000

The value of z(x) is: 2.000000

The value of y(x) * z(x) is: 32.000000

The value of y(x) * z(x) is: 9.000000

You can call functions as many times as you like, which is the entire point of creating functions

in the first place.

Functions with multiple input:

Thus far, we have only examined functions with a single input (or argument). We can pass down

many arguments to functions. The surface area of a cylinder is a function of both the height and

radius. Let’s make a function to calculate the surface area of a cylinder called SAC.

In SA_cyl.m:

function [SA] = SAC(h,r)

SA = 2*pi*r^2 + 2*pi*r*h;

return

endfunction

4

In main.m:

r1 = 2;

h1 = 1;

fprintf('The surface area of cyclinder 1 is: %7.2f \n' , SAC(h1,r1))

r2 = 1;

h2 = 1;

fprintf('The surface area of cyclinder 2 is: %7.2e \n ' , SAC(h2,r2))

At command line:

> main

The surface area of cyclinder 1 is: 37.70

The surface area of cyclinder 2 is: 1.26e+001

Notice that the arguments are labeled h1, r1, h2, and r2, not the names of the arguments in the

function (h and r). Remember that we are only sending down the VALUE of the arguments h1,

r1, h2, and r2 to the function.

Functions with multiple output:

Thus far, we have only made functions with a single output. But often we want functions to

calculate multiple quantities. Here is a currency converter.

In main.m:

dollars = input('Enter number of dollars: ');

yenperdollar = 90;

eurosperdollar = 0.70;

[yen, euros] = convert(dollars, yenperdollar, eurosperdollar);

fprintf('This is %6.1f yen \n', yen);

fprintf('This is %6.1f euros \n', euros);

In convert.m:

function [yen, euros] = convert (dollars, yenperdollar, eurosperdollar)

yen = dollars * yenperdollar;

euros = dollars * europerdollar;

return

endfunction

At command line:

> main

Enter number of dollars: 50

This is 4500.0 yen

This is 35.0 euro

