
1

(B.1) Using fprintf() with arrays:

If you only specify one formatting command, all elements of an array will be printed on a single

row (even multidimensional arrays). For multidimensional arrays, elements will be printed off

one column at a time.

M-file:

x = (1 : 0.25 : 2)

y = [1,4,7 ; 9,8,6];

fprintf('%7.2f' , x)

fprintf('\n')

fprintf('%7.2f' , y)

Output:

 1.00 1.25 1.50 1.75 2.00

 1.00 9.00 4.00 8.00 7.00 6.00

In order to print off elements as columns, use the \n command. The format commands will be

used over and over until all the elements are printed.

M-file:

x = (1 : 0.25 : 2);

y = [1,4,7 ; 9,8,6];

fprintf('%7.2f \n' , x)

fprintf('\n')

fprintf('%7.2f \n' , y)

fprintf('\n')

fprintf('%7.2f %7.2f %7.2f \n' , y)

fprintf('\n')

fprintf('%7.2f %7.2f \n' , y)

fprintf('\n')

fprintf('%7.2f %7.2f %7.2f \n' , y)

fprintf('\n')

fprintf('%7.2f %7.2f %7.2f %7.2f \n' , y)

2

After Execution:

 1.00

 1.25

 1.50

 1.75

 2.00

 1.00

 9.00

 4.00

 8.00

 7.00

 6.00

 1.00 9.00 4.00

 8.00 7.00 6.00

 1.00 9.00

 4.00 8.00

 7.00 6.00

 1.00 9.00 4.00

 8.00 7.00 6.00

 1.00 9.00 4.00 8.00

 7.00 6.00

If you try to print multiple arrays you may run into trouble. I would like to print off all x-values

in the first column, all the corresponding y-values in the second column.

M-file:

x = (0:1:5);

y = x.^2;

fprintf('%4.1f %6.1f \n' , x , y)

Output:

 0.0 1.0

 2.0 3.0

 4.0 5.0

 0.0 1.0

 4.0 9.0

16.0 25.0

3

Whoops. This didn‟t work because we printed off all the elements of x first, then the elements of

y. Instead, we combine x and y into a single array and then print that. Remember, multi-

dimensional arrays will be printed column by column.

M-file:

x = (0:1:5);

y = x.^2;

tablexy = [x;y];

fprintf('%4.1f %6.1f \n' , tablexy)

Output:

 0.0 0.0

 1.0 1.0

 2.0 4.0

 3.0 9.0

 4.0 16.0

 5.0 25.0

(C) Writing to a file:

When writing to a file, you need to follow three steps:

(1) Open the file with the fopen() command.

fileid = fopen(„filename.txt‟ , „w‟)

The fileid is a number that identifies the file you are opening. The ‘w’ gives you permission to

write to the file.

(2) Print to the file using fprintf().

fprintf(fileid, „some text and formatting instructions‟ , variables)

Notice how we put the fileid inside the fprintf() command. This is how Matlab/Octave knows

where to write the information. If you left out the fileid, Matlab/Octave would write to the

screen.

(3) Close the file using fclose().

fclose(fileid)

4

In mfile.m:

a = 50.5;

b = 21.2;

x = (0:0.25*pi:pi);

y = sin(x);

tablexy = [x;y];

file1 = fopen('sample.txt' , 'w');

fprintf(file1 , '%6.2f\n' , a , b);

fprintf(file1 , '%6.2f %6.2f \n', tablexy);

fclose(file1);

Inside „sample.txt‟:

> mfile

 50.50

 21.20

 0.00 0.00

 0.79 0.71

 1.57 1.00

 2.36 0.71

 3.14 0.00

(E) Reading from a file:

There are many commands that can be used to read data from a file depending on the situation.

In this class we will learn one command, fscanf().

When reading data from a file, you need to follow a similar procedure as when writing data to a

file.

(1) Open the file with the fopen() command.

fileid = fopen(„filename.txt‟)

The fileid is a number that identifies the file you are opening. Notice that we left off the ‘w’

since we do not want to write to this file.

5

(2) Read from the file with the fscanf() command.

output_array = fscanf(fileid, „format of data file‟, size of data);

“size of data” refers to the number of rows and columns in the data file.

[2,10] means than 2 columns x 10 rows will be read in.

See example below for demonstration of fscanf().

(3) Close the file

fclose(fileid)

6

Example: Create a text file containing the hour, temperature , and relative humidity. Then read

the data and store it in an array (which we can use later).

In mfile.m:

clear;clc;

% The first part of the program creates a text file containing the time and temperature.

time = [0,3,6,9,12,15];

temp = [55.3,54.1,54.0,56.7,62.9,63.1];

RH = [67,76,77,80,90, 93];

array = [time ; temp ; RH];

file1 = fopen('temp_RH.txt' , 'w');

fprintf(file1, '%2i \t %5.1f %5.1f \n' , array);

fclose(file1);

% now we read in the data

file2 = fopen('temp_RH.txt');

% This will read the time and temp data until the file is over

% (3 columns and an infinite number of rows... unless end of file is reached)

% [3,6] would do the same thing as [3,inf] in this case.

A = fscanf(file2, '%f' , [3, inf]);

%A = fscanf(file2, '%f');

fclose(file2);

% Notice that the data is transposed when stored in A.

% fscanf() reads data in COLUMN ORDER. Similar to how fprintf() writes in column order.

disp(A)

% However, this format is perfect for fprintf since it prints column by column

fprintf('%3i %7.2f %7.2f \n', array)

% We can manipulate the data in A

fprintf('The mean temperature is %5.1f \n' , mean(A(2,:)))

fprintf('The mean RH is %5.1f \n' , mean(A(3,:)))

In „temp.txt‟:

 0 55.3 67.0

 3 54.1 76.0

 6 54.0 77.0

 9 56.7 80.0

12 62.9 90.0

15 63.1 93.0

7

After execution:

 0.00000 3.00000 6.00000 9.00000 12.00000 15.00000

 55.30000 54.10000 54.00000 56.70000 62.90000 63.10000

 67.00000 76.00000 77.00000 80.00000 90.00000 93.00000

 0 55.30 67.00

 3 54.10 76.00

 6 54.00 77.00

 9 56.70 80.00

 12 62.90 90.00

 15 63.10 93.00

The mean temperature is 57.7

The mean RH is 80.5

8

Comparing data in arrays:

I didn‟t have time to get to this material when discussing logical expressions.

M-file:

a = 1;

b = 2;

c = 4;

d = (a<3) & (b==c)

f = (a<3) | (b==c)

g = ~f

Output:

d = 0

f = 1

g = 0

You can compare entire individual elements in arrays too.

> quiz1 = [99,88,77];

> quiz2 = [90,90,89];

> quiz1 < quiz2

ans = 0 1 1

An array of true/false values is returned. These can be stored in a logical array.

> a = quiz1 < quiz2

a = 0 1 1

You can compare all elements in an array to a single value.

> b = quiz1 > 79

b = 1 1 0

> whos

Variables in the current scope:

 Attr Name Size Bytes Class

 ==== ==== ==== ===== =====

 a 1x3 3 logical

 b 1x3 3 logical

 quiz1 1x3 24 double

 quiz2 1x3 24 double

a and b are logical arrays.

9

The find() command:

This command will take as input a logical array and return the index of the array elements that

are true.

> find(a)

ans = 2 3

> c = find(quiz1 > 79)

c = 1 2

You can use these array elements to find the value of the test scores that were higher than 79.

> quiz1(c)

ans = 99 88

Comparing character arrays:

You can compare character data too. Remember that characters are stored individual elements.

In M-file:

a = 'HTHHT'

b = 'TTTTH'

a == b

Output:

a = HTHHT

b = TTTTH

ans = 0 1 0 0 0

Only the second element of each array is the same. The number of elements in a and b must be

the same.

