
1

LOGICAL OPERATIONS AND FLOW CONTROL:

RELATIONAL OPERATORS:

Often we want to compare values of different variables in order to determine what to do next.

There are many relational operators that help us compare values.

> greater than

< less than

== equal to (Notice the DOUBLE equal sign. One equal sign is the assignment operator.

>= greater than or equal to

<= less than or equal to

~= not equal to

The relational operators above allow us to compare alphanumeric data. However, it we want to

compare logical data, we need to use logical operators

& and

 | or

~ not

Let’s go through some examples of using relational operators.

> x = 5.4

x = 5.4000

> y = 3.9

y = 3.9000

> x == y

ans = 0 (0 means false)

> x > y

ans = 1 (1 means true)

> x >= y

ans = 1

> x ~= y

ans = 1

> x > y/50

ans = 1

When we compare two pieces of alphanumeric data Matlab/Octave returns 0 (false) or 1 (true).

Often we want to do some action if two or more conditions are met. For example, if you have

done your homework and it is earlier than midnight, you will go to Taco Bell for a snack. This

will require the use of logical operators. Here are the rules for using logical operators:

2

True and True True 1 & 1 1 (are both statements true? true!)

True and False False 1 & 0 0 (are both statements true? false!)

False and True False 0 & 1 0

False and False False 0 & 0 0

True or True True 1 | 1 1 (is either statement true? true!)

True or False True 1 | 0 1 (is either statement true? true!)

False or True True 0 | 1 1

False or False False 0 | 0 0

not True False ~1 0 (the opposite of true? false!)

not False True ~0 1

> 7==7 & 6>7 (true and false false)

ans = 0

> 7==7 & 6<7 (true and true true)

ans = 1

> 7==7 & 6>7

ans = 0

> 7==7 | 6<7 (true or false true)

ans = 1

> 7==7 | 6>7

ans = 1

> 7==9 | 9>10

ans = 0

> ~(7==9) (not false true)

ans = 1

> ~(7==7)

ans = 0

Here are some examples with variables. It is a good idea to use parentheses to avoid confusion

> x = 100; y = 8.1;

> (x>y) | (y==8.1)

ans = 1

> ((y*3)<(x*4)) & (x>5)

ans = 1

Comparing data in arrays:

You can compare entire arrays of data too.

> quiz1 = [99,88,77];

> quiz2 = [90,90,89];

3

> quiz1 < quiz2

ans = 0 1 1

An array of true/false values is returned. These can be stored in a logical array.

> a = quiz1 < quiz2

a = 0 1 1

You can compare all elements in an array to a single value.

> b = quiz1 > 79

b = 1 1 0

> whos

Variables in the current scope:

 Attr Name Size Bytes Class

 ==== ==== ==== ===== =====

 a 1x3 3 logical

 b 1x3 3 logical

 quiz1 1x3 24 double

 quiz2 1x3 24 double

See… a and b are logical arrays.

IF STATEMENTS:

Often we want to execute a command only if a certain test condition is met. We use if

statements to do this. There are a few different types of if statements.

(A) Simple if statement

If you want to execute commands when a certain test condition is met, use a simple if statement.

if (test condition)

 statements

end

You don’t need the parentheses, but it is a good idea to avoid confusion and mistakes.

In mfile.m:

x = 5.4

y = 10

if (x>4) % if the test condition is true, the following two statements will be executed

 y = y + 1; % if the test condition is false, the statements will not be executed

4

 x = 2;

end

x

y

At the command line:

> mfile

x = 5.4000

y = 10

x = 2

y = 11

(B) If/Else statement

An if/else statement will allow you to execute certain statements if a test condition is true and

execute other statements if a test condition is false.

In mfile.m:

x = 5

y = 10

if (x>y)

 y = x % Execute the next two lines if the test condition is true

 z = 100;

else

 z = 200; % Execute this line if the test condition is false

end

x

y

z

At the command line:

> mfile

x = 5

y = 10

x = 5

y = 10

z = 200

(C) If/Elseif statement:

If you have 2+ possible conditions that can be met, you can use an if/elseif statement.

In mfile.m:

5

x = 5;

if (x<0) % This is false, so the following commands are not executed

 z = 100;

 beep

elseif (x>=0 & x<10) % This is true, so the following commands are executed

 z = 200; % and the if statement ends

 beep, beep

elseif (x<=10) % This is true, but is not executed

 z = 300;

 beep, beep, beep

end

z

At the command line:

> mfile

z = 200 (with 2 beeps)

Note that once a test condition is found to be true, the statements after the test condition are

executed and the if/elseif statement ends even if later test conditions are true too.

NESTED IF STATEMENTS:

You can put if statements within if statements.

In mfile.m:

score = input('Enter your score: ');

disp('Your grade is:')

if(score<=100 & score>=90)

 grade(1) = 'A';

 if(score>=90 & score<93)

 grade(2) = '-';

 elseif(score>=93 & score<97)

 grade(2) = ' ';

 elseif(score>=97 & score<=100)

 grade(2) = '+';

 end

 disp(grade)

else

 disp('B or worse')

end

At command line:

> mfile

Enter your score: 93.2

6

Your grade is:

A

Another example:

In M-file:

score = input('What was your test score?: ');

age = input('How old are you?: ');

if(score>90)

 if(age<=18)

 disp('You did very good... for a young person')

 elseif(age<=21 & age>18)

 disp('You did pretty good... for a young person')

 else

 disp('You are old')

 end

else

 disp('Your score is too low')

end

Output:

What was your test score?: 91

How old are you?: 14

You did very good... for a young person

What was your test score?: 89

How old are you?: 55

Your score is too low

(D) Switch and Case

This is similar to if/elseif but may be more useful if there are multiple options. A useful

application of switch is when comparing character strings. The general format of switch and

case is the following.

switch variable

 case {options}

 statements

 case {options}

 statements

 …

 otherwise

 statements

7

end

The braces { } aren’t strictly necessary, but they help keep your code organized.

In mfile.m:

animal = 'dog';

switch animal

 case {'cat'}

 disp('meow')

 case {'dog' , ‘canine’}

 disp('woof')

 case {'sheep'}

 disp('baaaa')

 case {'duck'}

 disp('quack')

 otherwise

 disp(‘I have no idea’)

end

At the command line:

> mfile

woof

