Sensation, Part 4
 Gleitman et al. (2011), Chapter 4

Mike D'Zmura
Department of Cognitive Sciences, UCI

Psych 9A / Psy Beh 11A
February 20, 2014

From last time...

Psychology, 8/e Figure 4.24
© 2011 W. W. Norton \& Company, Inc.

Rod Transduction

Rhodopsin

("visual purple")
-rod photopigment -absorbs photons
-a combination of

1) Retinal
(like vitamin A)
$+$
2) Opsin
(protein coded genetically)

Fig 8. Schematic diagram of Rhodopsin in the outer segment discs.
-embedded in disc membrance

Retinal changes shape when it absorbs a photon of light...

11-cis-retinal

bond rotation to all-trans retinal

Cascade of biochemical events upon photon absorption

 by a rod results in closing of ion channels and hyperpolarization
movie of intracellular biochemical events in rod phototransduction http://webvision.med.utah.edu/movies/trasduc.mov

Rod Transduction

In the dark:

Membrane ion channels are open, causing a relatively depolarized membrane potential. Synaptic transmitter is released.

In the light:

Change in shape of rhodopsin causes (indirectly) membrane ion channels to close, in turn causing a relatively hyperpolarized membrane potential. Synaptic transmitter is no longer released.

Rods in Dark

Rods in Light

channel openhigh cGMP
channel closed -
low cGMP

Psychology, 8/e Figure 4.24

© 2011 W. W. Norton \& Company, Inc.

Mapping of the visual field

The lateral geniculate nucleus (LGN) receives information from both eyes.
The left half of the LGN receives information from the right side of the visual field.
The right half of the LGN receives information
from the left side of the visual field.
Some optic nerve fibers must cross sides for this to occur.
Contralateral organization also holds true for neurons in primary visual cortex (area V1).

The

Retinogeniculate Pathway

Psychology, 8/e Figure 4.26
© 2011 W. W. Norton \& Company, Inc.

Visual Processing: Contrast Effects and Spatial Opponency

- Contrast effects
- accentuate edges
- example: Mach bands
- lateral inhibition
- an example of how the visual system refines stimulus information by emphasizing various aspects and understating others

Simultaneous Contrast

Simultaneous Contrast

Simultaneous Contrast

The disk at right is lighter than the surrounding black area. By contrast, the disk at right ends up looking even lighter.
We need neurons that compare photoreceptoral responses from different retinal image locations.

light intensity:

This is a Mach Band

Spatial Opponency \& Lateral Inhibition

Spatial Opponency \& Lateral Inhibition

Photoreceptors

Center-surround opponent units

Spatial Opponency \& Lateral Inhibition

Receptive field

Cat retinal ganglion cell response to a point of light depends on light location in its receptive field.

(C)

(D)

Psychology, 8/e Figure 4.43
© 2011 W. W. Norton \& Company, Inc.

Retinal ganglion cells (and bipolars) have a center-surround receptive field structure

Color Composite Image of Macaque Retina

Packer,
Bensinger \& Williams, at http://www. cvs.rochester .edu/people /d williams/ d williams.h tml

A center-surround receptive field structure is spatially opponent. Cells with center-surround receptive fields enhance edges.

Edge and bar detectors were found in cat primary visual cortex by Nobel Prize winners Hubel \& Wiesel

4.41 SCIENTIFIC METHOD: How do individual cells in the visual cortex respond to different types of stimulation?

Method

1. An anesthetized cat has one eye propped open so that a series of visual stimuli-e.g., lines with different orientations-could be directed to particular regions of its retina.
2. A microelectrode was implanted in its visual cortex to monitor a single cell's firing rates in response to the lines.

3. When the cell fired, its neural impulses were amplified, then displayed on an oscilloscope. (The procedure was repeated to monitor many individual cells' responses.)

Results

Some cells fired more rapidly in response to a vertical line.

 preferring neurons fired at only a moderate rate in response to a tilted line.

Neuron
firing
rate

CONCLUSION: Each neuron in the visual cortex has a "target" stimulus that evokes especially rapid firing. These targets include low-level features, such as arcs or lines of a specific orientation.

SOURCE STUDIES: Hubel \& Wiesel, 1959, 1968

Psychology, 8/e Figure 4.41
© 2011 W. W. Norton \& Company, Inc.

Visual Processing: Color and Color Opponency

- Visual sensations vary in color, and color sensations can be ordered by
- hue, brightness, and saturation.
- Normal human color vision is trichromatic, depending on three cone types.
- Responses from different cone types are compared to produce opponent color pairs, so accounting for
- complementary colors, color contrast, and negative afterimages.

The visible spectrum

Roy G. Biv

Light Sources

Sunlight and most natural lights
comprise light at a large number of wavelengths

Spectral Power Distribution of Average Daylight D65
http://www.creativepro.com/story/feature/13036.html?origin=story

Light Sources

Lights with energy at only a single wavelength are called monochromatic

A helium-neon laser light (standard red laser) has energy at 632.8 nm .
Green laser pointers provide light at 532 nm .

from http://en.wikipedia.org/wiki/Helium-neon laser

Additive Color Mixture

Lights may be combined additively.
-three slide projectors displaying on a single screen -color television set (red, green and blue phosphors) -spotlights and other lights at a theater

Subtractive Color Mixture

Pigments are combined subtractively; they absorb light.

Trichromacy

A light with complex spectral properties has a visual effect that we can represent by just three numbers.

\longrightarrow just three numbers!

Trichromacy

-Thomas Young
-Hermann von Helmholtz

Only three distinct lights are needed to reproduce the full gamut of colors.
One generally chooses three lights of very high saturation and of differing hue (e.g., red, green and blue lights) as primaries.

Hue

Saturation or Chroma

Brightness
or Lightness
or Value

Trichromacy

Generally held to be a consequence of our having (for normal color vision) 3 types of cone, namely L-cones, Mcones, and S-cones, distinguished by their photopigments, which differ in spectral sensitivity.

Color Blindness

Dichromatic color vision
Protanopia - lack of L-cones
Deuteranopia - lack of M-cones
relatively rare
Tritanopia - lack of S-cones

Anomalous color vision
Protanomaly - paucity of L-cones
more common
or altered L-cone pigment sensitivity
Deuteranomaly - paucity of M-cones
or altered M -cone pigment sensitivity
Tritanomaly - paucity of S-cones
or altered S-cone pigment sensitivity

Color Blindness

L-cone and M -cone pigments (the opsins) are coded by genes on the X -chromosome.

Females (XX) have two X-chromosomes (which differ) and so are unlikely to exhibit problems with L- or M-cones

Males (XY) have only one X-chromosome, so that if there is a problem with the opsin genes, that problem will lead to color blindness

Inherited L-cone and M-cone abnormalities lead to red-green color blindness This is the most common form of color blindness: 8% of males

Inherited S-cone related color vision deficiency is rare. However, there are medical conditions like diabetes which can weaken and kill off S-cones (an "acquired" color vision deficiency).

Inherited color vision deficiency is rare among females.

Tests of Color Blindness

Ishihara Plates

from R. Littlewood http://www.cleareyeclinic.com/ishihara.html
There's a neat web exhibit suggesting how things appear to color-blind people at http://webexhibits.org/causesofcolor/2B.html

Color Opponency

There appear to be four primary hues red, green, yellow and blue

Hering
Hurvich \& Jameson
Svaetichin
DeValois

One never sees a light which looks both red and green or a light which looks both blue and yellow - color opponency

There appear to be lights with a unique hue appearance unique red - appears neither yellowish nor bluish unique green - appears neither yellowish nor bluish unique blue - appears neither reddish nor greenish unique yellow - appears neither reddish nor greenish

Color Opponency: Unique Hues

There appear to be lights with a unique hue appearance unique blue - appears neither reddish nor greenish

Unique Hues

There appear to be lights with a unique hue appearance unique blue - appears neither reddish nor greenish unique yellow - appears neither reddish nor greenish

Unique Hues

There appear to be lights with a unique hue appearance unique blue - appears neither reddish nor greenish unique yellow - appears neither reddish nor greenish unique green - appears neither yellowish nor bluish

Unique Hues

violet, not red

There appear to be lights with a unique hue appearance unique blue - appears neither reddish nor greenish unique yellow - appears neither reddish nor greenish unique green - appears neither yellowish nor bluish unique red - appears neither yellowish nor bluish

The shortest visible wavelength appears violet when presented as a monochromatic light.
The longest visible wavelength appears an orangish red when presented as a monochromatic light.
Unique red (neither blue nor yellow) is an extraspectral color

Color Opponency

Hue Cancellation Experiment Results (Hurvich \& Jameson)

Hurvich-Jameson color-opponent functions

Color Opponency

Compare LMS cone responses

Red-Green

Color Opponency

Compare LMS cone responses

Blue-Yellow

Monkey "blue-yellow" cell is excited by short-wavelength light and is inhibited by longer-wavelength light

Color Opponent and Achromatic Channels

Achromatic
(White-Black)

Simultaneous Color Contrast

not as strong as with a black-white stimulus

Simultaneous Color Contrast

blue Chevreul stripes - perceived variation in saturation within a stripe such illusions suggest that there are cortical neurons sensitive to color change across space (e.g., color change across an edge)

Successive Color Contrast

Stare at the black dot on the flag for 30 sec . Then gaze steadily at the dot at right. You are likely to see a negative afterimage.

